Roll No.:

328455(28)

B. E. (Fourth Semester) Examination, April-May 2020

(New Scheme)

(ET & T Engg. Branch)

SIGNALS and SYSTEMS

INTERNATIONAL PROPERTY OF THE PROPERTY OF THE

Time Allowed; Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Part (a) of each question is compulsory & carries 2 marks. Solve any two from (b), (c) and (d) and carries 7 marks.

Unit-I

1. (a) Define causal and non-causal signal.

2

- (b) Sketch the signal $x(t) = e^{-a|t|}$ and a > 0. Also determine whether the signal is a power signal or an energy signal or nither.
- (c) Assume $x_1(t)$ and $x_2(t)$ are periodic signals with periods T_1 and T_2 respectively under what conditions is the sum $x(t) = x_1(t) + x_2(t)$ periodic and what will be the period of x(t) if it's periodic.
- (d) Check whether the following system are static or dynamic, linear or non linear, causal or non causal and time invariant or time variant.

7

7

- (i) y(n) = x(n) x(n-1)
- (ii) $y(n) = \cos[x(n)]$

Unit-Ⅱ

- 2. (a) State Dirichelets conditions for the existence of continuous time Fouriers series.
 - (b) State and prove following properties of Fourier transform.
 - (i) Linearity
 - (ii) Time shifting
 - (iii) Time scaling

(c) Obtain the Fourier transform and plot spectrum of a rectangular pulse of duration 2 second and having a magnitude of 10 volts as shown in below figure.

(d) Exlplain with example Fourier series wave symmetry conditions.

Unit-III

- 3. (a) State initial value theorem and final value theorem.
 - (b) Define the ROC of z transform and state the properties of the ROC.
 - (c) Find z-transform and ROC of the following sequence: 7

7

- (ii) $x(n) = n^2 u(n)$
- (d) The impulse response of the discrete time LTI system is given below

 $h(n) = (0.9)^n u(n+2)$

- (i) Determine whether the system is stable or not.
- (ii) Justify whether the system is causal or non causal.

Unit-IV

- 4. (a) Define Invertible LTI system.
 - (b) An LTI system with input x(t) and output y(t) is described by following differential equation.

$$\frac{d^{2}y(t)}{dt^{2}} + 3\frac{dy(t)}{dt} + 2y(t) = x(t); \quad t \ge 0$$

Initial conditions
$$y(0) = 3$$
, $\frac{dy(t)}{dt}\Big|_{t=0} = 4$

Find the natural response $y_N(t)$, forced response $y_F(t)$ and total response y(t) of the system for r(t) = u(t).

(c) Determine the frequency response, magnitude response, phase response and time delay of the system given by

$$y(n) + \frac{1}{2}y(n-1) = x(n) - x(n-1)$$

- (d) Find the convolution of $x_1(t)$ and $x_2(t)$ for the following signal:
 - (i) $x_1(t) = e^{-at} u(A)$ and $x_2(t) = e^{-bt} u(t)$
 - (ii) $x_1(t) = \sin t u(t)$ and $x_2(t) = u(t)$

Unit-V

- 5. (a) Define the state of system.
 - (b) Find state equation of a continuous-time LTI system with differential equation.

$$\frac{d^3y(t)}{dt^3} + 2\frac{d^2y(t)}{dt^2} + 3\frac{dy(t)}{dt} + 4y(t) = 5x(t)$$

7

2

7

(c) Obtain the state model of the parallel RLC network as shown in below figure.

7

(d) Find state equation of a discrete-time LTI system with system function.

7

$$H(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{1 + a_1 z^{-1} + a_2 z^{-2}}$$
 (ii)

ALMINICE

in). Der be die state of system:

(b) First state equation of a continuous-time Let system with differential equation

(1) = 2 = (1) + 4 + (1) + (1) + (1) = 5 = (1)